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Anaphylaxis is a severe systemic hypersensitivity reaction that is
rapid in onset; characterized by life-threatening airway,
breathing, and/or circulatory problems; and usually associated
with skin and mucosal changes. Because it can be triggered in
some persons by minute amounts of antigen (eg, certain foods or
single insect stings), anaphylaxis can be considered the most
aberrant example of an imbalance between the cost and benefit
of an immune response. This review will describe current
understanding of the immunopathogenesis and pathophysiology
of anaphylaxis, focusing on the roles of IgE and IgG antibodies,
immune effector cells, and mediators thought to contribute to
examples of the disorder. Evidence from studies of anaphylaxis
in human subjects will be discussed, as well as insights gained
from analyses of animal models, including mice genetically
deficient in the antibodies, antibody receptors, effector cells, or
mediators implicated in anaphylaxis and mice that have been
‘‘humanized’’ for some of these elements. We also review
possible host factors that might influence the occurrence or
severity of anaphylaxis. Finally, we will speculate about
anaphylaxis from an evolutionary perspective and argue that, in
the context of severe envenomation by arthropods or reptiles,
anaphylaxis might even provide a survival advantage. (J Allergy
Clin Immunol 2017;140:335-48.)
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The recent International Consensus on Anaphylaxis described
anaphylaxis as ‘‘a serious, generalized or systemic, allergic or
hypersensitivity reaction that can be life-threatening or fatal.’’1

This definition is intentionally ‘‘generic’’ in that it does not
mention any of the specific immune elements that might be
involved in particular instances of the disorder because these
can vary depending on individual circumstances. In this review
we will describe the key immune elements, such as antibody
isotypes, effector cells, and biological mediators, that can
contribute to the development and pathophysiologic manifesta-
tions of anaphylaxis. In particular, we will note the extent of
evidence implicating these immune components in anaphylaxis
in human subjects versus that induced in mouse models of
the disorder, focusing especially on forms of anaphylaxis
induced by reactions of allergens with antigen-specific
antibodies. We will not extensively review forms of anaphylaxis
induced by the antibody-independent activation of effector cells,
such as mast cells and basophils, topics that have been reviewed
elsewhere.2,3
CLINICAL ANAPHYLAXIS
The clinical definition, classification, nomenclature, and

treatment of anaphylaxis have been points of controversy, varying
among different medical subspecialties and in different countries,
and it became clear that an important goal for the field would be to
achieve a true international consensus on these important points.4

Subsequently, multinational multidisciplinary symposia were
convened to agree on the definition of anaphylaxis, the clinical
criteria for its diagnosis, and its management.5 Participants
agreed on a description of anaphylaxis as ‘‘a serious allergic
reaction that is rapid in onset and may cause death,’’ as well as
on 3 sets of clinical criteria to diagnose anaphylaxis.5 These
criteria were reaffirmed in the recent International Consensus
on Anaphylaxis article1 and are more extensively reviewed
elsewhere in this issue of the Journal.6

A minority of patients exhibit biphasic allergic reactions, in
which signs and symptoms of anaphylaxis recur hours after the
early phase of the reaction has waned, and in some patients
late-phase reactions occur without initial hypotension or airway
obstruction.7,8 In addition to the biphasic reactions observed in
some patients with anaphylaxis induced by a variety of causes,
patients who have IgE reactive with the oligosaccharide
galactose-alpha-1,3-galactose, which is present in mammalian
meat and in some therapeutic antibodies, can exhibit anaphylaxis
335
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Abbreviations used

ASA: Active systemic anaphylaxis

BV: Honeybee venom

CysLT: Cysteinyl leukotriene

LT: Leukotriene

MPO: Myeloperoxidase

PAF: Platelet-activating factor

PAF-AH: Platelet-activating factor acetylhydrolase

PSA: Passive systemic anaphylaxis
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after a delay of several hours during which no signs or symptoms
are apparent.9

Although there is broad consensus on many aspects of the
treatment of anaphylaxis,6,10-12 such recommendations are based
largely on observational studies, extrapolation from retrospective
case reviews, and a few clinical trials.10,11 Injectable epinephrine
is universally agreed upon as the first-line therapy for
anaphylaxis10-12 and can counteract many pathophysiologic
changes in patients with anaphylaxis by acting through a1-
adrenergic receptors to induce vasoconstriction, which prevents
or diminishes tissue/airway edema, hypotension, and distributive
shock; b1-adrenergic receptors to increase heart rate and cardiac
contractility; and b2-adrenergic receptors to dilate the airways.

11

In addition, epinephrine’s action on b2-adrenergic receptors
might potentially block further release of mediators (histamine
and eicosanoids) by mast cells and perhaps other effector
cells.13,14

Other therapies should be considered second-line therapies and
not a substitute for epinephrine. Guidelines generally agree that
patients should be placed in a supine position and given
crystalloid to maintain perfusion, and oxygen.10,12 H1- and
H2-antihistamines might be helpful in treating cutaneous and
upper respiratory signs and symptoms, and corticosteroids might
GLOSSARY

ACTIVE SYSTEMIC ANAPHYLAXIS (ASA): Anaphylaxis induced by

means of active immunization (induction of antibodies involved in

anaphylaxis through antigen sensitization of naive hosts).

ANGIOTENSINOGEN: Primarily synthesized in the liver, angiotensino-

gen is an a2-globulin that is converted into angiotensin I by renin. Angio-

tensin I is converted into angiotensin II by angiotensin-converting

enzyme. Angiotensin II, in addition to promoting vasoconstriction,

also mediates thirst, sodium retention, and aldosterone secretion.

c-KIT D816V MUTATION: c-KIT is the gene for KIT, a transmembrane

tyrosine kinase receptor whose ligand is stem cell factor. The D816V

mutation is the most commonly detected mutation in mastocytosis

and occurs in codon 816. It consists of the substitution of valine

for aspartate (Asp816Val). This activating mutation results in ligand-

independent autophosphorylation of KIT.

DISSEMINATED INTRAVASCULAR COAGULATION (DIC): A coagulop-

athy that occurs as a secondary complication to many different

disorders. Key features are microthrombi leading to tissue hypoxia

and infarction, as well as hemorrhages caused by depletion of

coagulation factors and platelets and activation of fibrinolysis. Trauma,

sepsis, and malignancy are common triggers.

MASS SPECTROMETRY: A laboratory tool that can be used to detect

and quantify the protein composition of a biological sample. Proteins

are ionized, followed by separation of the ions by mass/charge ratio.

The Editors wish to acknowledge Daniel Searing, MS, for preparing this glo
help prevent biphasic reactions but neither prevent nor treat
airway obstruction or circulatory collapse and therefore cannot
be considered alternatives to epinephrine.10-12 Development of
novel therapies for anaphylaxis is likely to be guided mainly by
limited data from human subjects and by observations made using
animal models.
IMMUNOLOGIC MECHANISMS OF ANAPHYLAXIS
Only limited data on immunologic mechanisms of anaphylaxis

from human subjects are available because of the life-threatening
nature of anaphylaxis and obvious ethical concerns. Human
studies of anaphylaxis have included inducing anaphylaxis in
volunteers (most often throughHymenoptera sting challenge) and
collecting samples from patients presenting for emergency
management of anaphylaxis. Data obtained in such studies, as
well as key findings obtained by using mouse models of
anaphylaxis, are summarized in Fig 1 and Table I.15-106 Themajor
pathophysiologic changes observed during anaphylaxis and some
of the mediators that are thought to contribute to them are shown
in Fig 2.
EFFECTOR MOLECULES AND RECEPTORS

IgE-dependent anaphylaxis
IgE antibodies can play an important role in conferring

immunologic specificity to effector cell activation in patients
with anaphylaxis and other allergic diseases.15,106-108 IgE is the
isotype found at by far the lowest concentrations in the circulation
(50-200 ng/mL total circulating IgE in healthy subjects vs
approximately 10 mg/mL for IgG)107; however, IgE can be found
at much higher levels in patients with allergic diseases.15,16 IgE
binds to the high-affinity receptor FcεRI on the surfaces of blood
basophils and tissue-resident mast cells17 and (in human subjects
to a greater extent than in mice) other cell types, including
Ions then pass through a tuned field and generate an electric current that

can be analyzed.

MYELOPEROXIDASE (MPO): An enzyme that mediates the conversion

of H2O2 to HOCl, which can contribute to the killing of phagocytosed

bacteria, fungi, and viruses, as well as to oxidative damage to host

tissues.

PASSIVE SYSTEMIC ANAPHYLAXIS (PSA): A model in which the

adoptive transfer of IgE or IgG antibodies to normal mice permits

them to exhibit anaphylaxis on subsequent challenge with antigens

recognized by such antibodies.

TRYPTASE: Aserine esterasewith bothmature and immature forms and

the most abundant serine protease of mast cells. Basophils have about

500-fold lower levels of tryptase than mast cells. The immature form is

released constitutively by unstimulated mast cells, whereas the mature

form is released on mast cell activation, such as in anaphylaxis. In

human subjects there are 4 different tryptases (a, b, g, and d), of which

the a and b tryptases are thought to be medically important. Tryptases

can act locally, as well as remotely, on release. Tryptase’s biological

functions are not entirely understood, but it is thought to have

proinflammatory effects, including promotion of tissue edema and

remodeling, chemokine secretion, and neutrophil recruitment.

Anti-inflammatory effects include degradation of proteins, such as

allergens and neuropeptides.

ssary.



FIG 1. Multiple potential pathways in antibody (Ab)–mediated anaphylaxis. A, Antigen-specific IgE

antibodies and FcεRI-bearing effector cells (eg, mast cells and basophils) play a dominant role in

anaphylaxis induced (sometimes by very small amounts of bi- or multi-valent antigen) when concentrations

of IgG antibodies are low. B, Mouse models of anaphylaxis suggest that IgG antibodies and FcgR-bearing

effector cells (eg, basophils, macrophages, neutrophils, and mast cells) can be important effectors of

anaphylaxis induced by large amounts of antigen that forms immune complexes in the presence of high

concentrations of IgG antibodies. Some examples of anaphylaxis likely involve both pathways (A and B).

Note that coengagement of immunoreceptor tyrosine-based activation motif (ITAM)-containing activating

FcgRs or FcεRI with the immunoreceptor tyrosine-based inhibitory motif (ITIM)-bearing FcgRIIB (on mast

cells [in mice, but perhaps not, or at lower levels, in human subjects] or basophils [in human subjects

and mice]) can act to diminish effector cell activation. Red indicates strong evidence for the importance

of these mediators in human anaphylaxis induced by antigen. Blue indicates that these elements can

participate in models of anaphylaxis in mice, but their importance in human anaphylaxis is not yet clear.

Gray indicates elements with the potential to influence anaphylaxis, but their importance in human or

mouse anaphylaxis is not yet clear (eg, human mast cells are thought to make little or no serotonin).
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neutrophils, eosinophils, monocytes and dendritic cells, and
platelets.17 On exposure to a bivalent or multivalent allergen,
cross-linking of FcεRI-bound IgE induces activation of mast cells
and basophils and the immediate release of preformed mediators,
such as histamine and various proteases, as well as de novo
synthesis of many inflammatory mediators, such as certain
leukotrienes (LTs), prostaglandins, and cytokines.15,17 The
importance of that reaction was demonstrated 50 years ago,
when different groups realized that purified IgE was capable of
transferring skin reactivity from sensitized human subjects to
naive hosts.18-20,106 Similarly, transfer of antigen-specific IgE
into naive mice sensitizes the animals to have anaphylaxis on
subsequent exposure to that allergen.21,22 Such IgE-mediated
anaphylaxis is abrogated in mice lacking the high-affinity IgE
receptor FcεRI,22 as well as in mast cell–deficient mice,23-25

highlighting the importance of IgE-mediated mast cell activation
in such models of anaphylaxis.

Ever since the discovery that IgE can transfer allergen
reactivity, antigen-specific IgE antibodies have been regarded as
a key risk factor for the development of allergy, anaphylaxis, or
both on subsequent antigen exposure. Indeed, quantification of
specific IgE levels is used as part of the diagnostic evaluation of
those thought to have allergic diseases and to identify
potential triggers of anaphylaxis in patients with a history of
anaphylaxis.109 Several trials have concluded that the use of the
anti-IgE therapeutic antibody omalizumab as an adjunctive
treatment during food or venom immunotherapy can decrease
the risks of severe allergic reactions, including anaphylaxis, and
in some but not all trials has been reported to improve the rapidity
and efficacy of immunotherapy in achieving desensitization.26-30

In addition, limited clinical data also suggest that omalizumab
might prevent spontaneous episodes of anaphylaxis in patients
with systemic mastocytosis, a disease characterized by marked
increases in mast cell numbers and activity31 (also see the review
by Akin110 in this issue of the Journal).

Clearly, however, IgE levels alone do not explain a subject’s
susceptibility to anaphylaxis. Some patients can experience
near-fatal anaphylaxis despite having low or undetectable levels
of circulating allergen-specific IgE.111 Conversely, allergen-
specific IgE can be detected in the plasma of many subjects who
do not have clinical symptoms when exposed to that allergen.112

This is particularly true for Hymenoptera venom, with the vast
majority (approximately 80%) of patients with IgE antibodies
specific for Hymenoptera venoms having no history of systemic
reactions to such venoms.113-116 Therefore, taken in isolation,
the presence of antigen-specific IgE antibodies does not indicate
that the person necessarily will exhibit any, let alone severe,
clinical reactivity to the recognized antigens.117-123



TABLE I. Roles (or potential roles) of various antibodies, effector cells, and mediators in anaphylaxis in human subjects and mice

Effector mechanisms Human subjects Mice

Antibody isotypes

IgE d Increased IgE levels are present in patients with allergic

diseases.15,16

d Purified IgE can transfer skin reactivity from a sensitized

human subject to a naive host.18-20,106

d The anti-IgE antibody omalizumab can decrease the risks

of anaphylaxis.26-31

d PCA and PSA are induced by transfer of antigen-specific

IgE into naive mice and antigen challenge.21,22

d IgE-mediated PCA and PSA are abrogated in mice lacking

the high-affinity IgE receptor FcεRI.22

d ASA is reduced partially in IgE-deficient or FcεR12/2

mice in some models but not in others.35,56,60,66,90,91

IgG d No definitive evidence is present to date.

d Cases of anaphylaxis were reported after treatment with

therapeutic mAbs without detectable levels of anti-drug

IgE.40,92-94

d IgG1, IgG2a, and IgG2b (but not IgG3) can induce

PSA.32-42

d IgG-PSA is reduced in FcgRIII2/2 mice.33,34

d IgG1 and IgG2b (but not IgG2a) PSA is enhanced in

FcgRIIB2/2 mice.34

d Mice deficient in FcεRIa exhibit enhanced systemic

anaphylaxis on challenge with 2.4G2 anti-FcgRII/III

antibodies.17

d Mice deficient for IgG1 or FcgRIII are largely protected in

several ASA models.56,65,66

d Humanized mice expressing human FcεRI or FcgRIIA

can have IgG-mediated anaphylaxis.85-87

Complement

Anaphylatoxins d Injection of low doses of C3a, C4a, or C5a in the skin of

healthy volunteers induces immediate wheal-and-flare

reactions.44-47

d Blood levels of C3a, C4a, and C5a correlate with the

severity of anaphylaxis in human subjects.43

d Reduced peanut-induced anaphylaxis is seen in C42/2

mice.95

d Reduced IgE PCA is seen in mice in which mast cells lack

C3aR or C5aR.96

d Anaphylaxis was induced by direct activation of comple-

ment by peanut extract in one model.88

d C32/2 mice can fully develop the IgG-PSA model.97

d ASA is not affected in C2-, C5- and C5aR-deficient mice

or after depletion of complement by using cobra venom

factor.90,98

Effector cells

Mast cells d Increased tryptase levels have been detected during acute

anaphylaxis in human subjects.43,48-51

d There is a high occurrence of anaphylaxis in patients with

mastocytosis.52-54

d IgE PCA and PSA were reduced markedly in various

strains of mast cell–deficient mice.23-25,40,55

d ASA is reduced in mast cell–deficient mice in some

studies but not in others.33,36,56-60,66,90,99

Basophils d There is no definitive evidence to date.

d Basophil activation tests were used to diagnose or confirm

allergen sensitization.61-64

d Controversial: some reports indicate a contribution of

basophils to IgG PSA34,36,38 or ASA,35,56,58 whereas

others found no significant role for basophils.34,59,66,97,100

Neutrophils d MPO levels are increased in patients with anaphylaxis

compared with healthy donors.67
d Antibody-mediated neutrophil depletion reduces IgG PSA

and ASA in some34,35,38 but not all58,66 models.

Monocytes/

macrophages

d Not yet determined d Depletion of monocytes/macrophages using clodronate

liposomes can reduce IgG PSA and ASA.34,56,59,65,66

Platelets d There is no definitive evidence to date.

d Anaphylaxis in human subjects is associated with platelet

activation.68

d There is no definitive evidence to date.

d Depletion of platelets with anti-platelet antibodies (daily

for 3 d) or neuraminidase does not reduce ASA.65

Mediators

Histamine d Aerosol administration of histamine induces bronchocon-

striction in healthy volunteers.69,70

d Intravenous administration of histamine in volunteers can

reproduce many of the symptoms of anaphylaxis.71,72

d H1-antihistamines are commonly used as adjunctive ther-

apy for acute anaphylaxis and anaphylactoid reactions.73

d Histamine injection induces anaphylaxis.101,102

d H1-antihistamine reduces IgE PSA.101

d IgG PSA and ASA are reduced in mice pretreated with

H1-antihistamine in some models34,66,103 but not in

others.35,65

d Mice deficient for the histidine decarboxylase gene are

protected from IgE PSA.101

d H1 and H2 receptor–deficient mice are partially protected

from IgE PSA.102

CysLTs d Levels of some CysLTs are increased during anaphylaxis

onset.79-81

d Intradermal injection of LTB4, LTC4, and LTD4 induces a

wheal-and-flare reaction in healthy volunteers.82

d Aerosol administration of LTC4 and LTD4 in healthy

subjects induces bronchoconstriction.69,70,78

d There is reduced IgE PSA in mice deficient for LTC4

synthase.83

d Mice deficient for CysLT receptor type 1 also have

significantly reduced IgE PCA.84

(Continued)
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TABLE I. (Continued)

Effector mechanisms Human subjects Mice

PAF d Injection of PAF in the skin of healthy volunteers induces

wheal-and-flare reactions.74-76

d Circulating PAF levels increase and circulating PAF-AH

activity decreases in proportion to the severity of

anaphylaxis.43,51,77

d PAF is released during IgG PSA and ASA.35,58

d Injection of PAF induces anaphylaxis.104

d Reduced ASA in mice deficient for the PAF receptor.105

d PAF receptor antagonists can partially reduce anaphylaxis

in IgG PSA and ASA models.34,35,39,40,58,65,66

Others d Anaphylaxis induces increases in levels of many media-

tors that could contribute (positively or negatively) to

the clinical signs and symptoms. This includes various

cytokines and chemokines, prostaglandins, tryptase, bra-

dykinin, and serotonin, for example.

d Mast cell–derived prostaglandin D2 can limit IgE PCA

and IgE PSA.89

PCA, Passive cutaneous anaphylaxis.
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IgE-independent anaphylaxis
The fact that some patients experience anaphylaxis despite

having undetectable levels of circulating allergen-specific IgE111

suggests the existence of IgE-independent pathways of
anaphylaxis. However, it should be noted that a lack of detection
of free IgE does not mean that such patients do not have enough
FcεRI-bound IgE to experience IgE-mediated anaphylaxis. More
definitive evidence for IgE-independent anaphylaxis has been
obtained by using mouse models (Table I).

Role of IgG and FcgRs
In addition to IgE, we now know that mouse IgG also can

induce passive systemic anaphylaxis (PSA) reactions, with
physiologic manifestations similar to those seen in patients with
IgE-dependent PSA (mainly hypothermia, vasodilatation, and
cardiopulmonary changes).32-42 Whether IgG antibodies also
mediate anaphylaxis in human subjects still remains to be proved
and is the topic of a recent review.2 As demonstrated in mice,
IgG-mediated anaphylaxis typically requires a much larger dose
of antigen than does IgE-mediated anaphylaxis,124 and systemic
anaphylaxis also requires systemic absorption of ingested
antigen.125 Such conditions could be encountered in the case of
anaphylaxis occurring in response to infusion of large quantities
of a drug or a therapeutic mAb (Table I).2

Role of complement
Activation of the complement cascade occurs in response to

many stimuli and leads to generation of the small polypeptides
C3a, C4a, and C5a, also named anaphylatoxins, which are potent
inflammatory mediators.126 Multiple lines of evidence suggest
that anaphylatoxins might be involved in anaphylaxis. Depletion
of complement levels and production of C3a and C5a is observed
in human anaphylaxis.43,127 Anaphylatoxins can activate various
myeloid cells, including mast cells and basophils.126 Injection of
low doses of C3a, C4a, or C5a into the skin of healthy volunteers
induces immediate wheal-and-flare reactions.44-47 In addition,
one study showed that blood levels of C3a, C4a, and C5a
correlated with the severity of anaphylaxis in human subjects.43

Several transgenic mouse models have been used to study the
importance of the complement pathway in anaphylaxis. Data
obtained by using these transgenic models are reviewed in
Table I and suggest that in mice the effect of complement
components on anaphylaxis can be in most cases largely
redundant with that of other mediators and might depend on the
specific model used.
POTENTIAL EFFECTOR CELLS OF ANAPHYLAXIS

Mast cells
Mast cells are viewed as key players in IgE-dependent

allergies and anaphylaxis.15,128 Mast cells ordinarily express
large numbers of the high-affinity IgE receptor FcεRI. During
IgE-dependent immune responses, the antigen-dependent
cross-linking of antigen-specific IgE bound to FcεRI induces
aggregation of FcεRI, promoting the activation of downstream
signaling events that lead to secretion of several biologically
active products thought to be implicated in allergic reactions,
such as histamine and various cysteinyl leukotrienes
(CysLTs).15,129-131 The molecular mechanisms of such IgE-
dependent stimulation of mast cells have been extensively
reviewed.15,129,131-133 There is compelling evidence of
activation of mast cells during acute anaphylaxis. Although
histamine detection can be used to diagnose anaphylaxis,
detection of histamine in clinical blood specimens is difficult
because of its extremely short half-life, and histamine is not
a mast cell–specific product because it can also be released
by other cells, including basophils134 and neutrophils.135,136

Tryptase is much more stable than histamine and is considered
a largely mast cell–derived product.48 Mature b-tryptase is
stored in mast cell granules and released on activation, such
as in anaphylaxis, whereas a- and b-protryptases are secreted
constitutively by mast cells, and therefore increased blood
levels might indicate increased mast cell burden rather than
anaphylaxis.48 Increased levels of tryptase have been detected
during acute anaphylaxis in human subjects.43,48-51 However,
the roles of tryptase or other mast cell–derived proteases in
anaphylaxis remain unknown. Moreover, in some patients
with anaphylaxis, such as children with food allergen–induced
anaphylaxis, increased blood levels of tryptase have not been
detected.137 Additional evidence for a role of mast cells in
anaphylaxis comes from the observation that patients with
mastocytosis, a disease characterized by the presence of high
numbers of mast cells in various organs,138 have a high
occurrence of anaphylaxis.52 In children with mastocytosis,
increased serum tryptase levels, which are used as an indicator
of mast cell burden, are a risk factor for anaphylaxis and for
the severity of anaphylactic episodes.53,54

Studies with various strains of mast cell–deficient mice
also confirmed the key role of mast cells in IgE-mediated
anaphylaxis.23-25,40,55 Several reports now demonstrate that
mast cell–deficient mice also have reduced peanut-induced
anaphylaxis in active systemic anaphylaxis (ASA) models.56-60

However, the role of mast cells in ASA models using other



FIG 2. Pathophysiologic changes in anaphylaxis andmediators that have been implicated in these processes.

Note: As mentioned in the text, first-line treatment of anaphylaxis consists of rapid administration of

epinephrine (see Castells6). Although there is evidence that the mediators shown in the figure, particularly

histamine and CysLTs, contribute to some of the various signs and symptoms of anaphylaxis and

antihistamines are routinely administered to patients with anaphylaxis, pharmacologic targeting of such

mediators represents second-line treatment and should not be considered an alternative to epinephrine.

Red indicates strong evidence for the importance of that mediator in human subjects in the development of

someof thesignsandsymptoms listed in theadjacentbox.Blue indicates that theseelementscanbe important

inmousemodels of anaphylaxis, but their importance in human anaphylaxis is not yet clear (studies in human

subjects suggest that CysLTs can contribute importantly to the bronchoconstriction and enhanced vascular

permeability associated with anaphylaxis [see text]). Gray indicates elements with the potential to influence

anaphylaxis, but their importance in human or mouse anaphylaxis is not yet clear. Note that somemediators

(underlined) are likely to contribute to development of late consequences of anaphylaxis.
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antigens/allergens is more controversial (Table I). Therefore it is
likely that mast cells can play either dominant or largely
redundant roles in anaphylaxis and that the mast cell’s role can
be enhanced or masked depending on factors such as the exact
model, adjuvant, and allergen used.
Basophils
Human basophils also express high levels of the high-affinity

IgE receptor FcεRI139 and express the activating IgG receptor
FcgRIIA and inhibitory IgG receptor FcgRIIB.140 Several lines
of evidence suggest that basophils participate in anaphylaxis.134

For example, IgE-dependent activation of human basophils is
associated with increased levels of certain basophil cell-surface
markers, such as CD203c or CD63, and this forms the basis of
basophil activation tests, which can be used to diagnose or confirm
allergen sensitization and monitor the effects of efforts to treat
these conditions with immunotherapy.61-64 However, it is difficult
to ascertain how important a contribution basophils make to
the pathology of anaphylaxis in human subjects, given the
concomitant mast cell activation that occurs in this setting. Even
in mice, the role of basophils in anaphylaxis is unsettled and
appears to be model-dependent (Table I).

Monocytes/macrophages
Monocytes and macrophages express high levels of activating

FcgRs141 and can also respond to anaphylatoxins.142 Studies in
mice have shown that depletion of monocytes/macrophages
by using clodronate liposomes can reduce anaphylaxis in
both IgG-mediated passive models and active models
(Table I).34,56,59,65,66 These data suggest that monocytes/
macrophages might play an important role in anaphylaxis.
However, to the best of our knowledge, the extent to which
monocytes/macrophages can contribute to anaphylaxis in human
subjects has not yet been determined.
Neutrophils
The potential functions of neutrophils in patients with

anaphylaxis have been recently reviewed in detail.143 Human
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and mouse neutrophils express several activating FcgRs,143 can
produce histamine,135,136 and can release platelet-activating
factor (PAF; please see below for details on the role of PAF in
anaphylaxis) in response to stimulation with immune complexes
in vitro.35 Moreover, human neutrophils reportedly can express
FcεRI, particularly in some patients with asthma.144 The major
enzyme stored in neutrophils is myeloperoxidase (MPO).
A recent report shows that circulating MPO levels are increased
in patients with anaphylaxis compared with those in healthy
donors.67 Consistent with this, increased MPO activity can also
be detected as soon as 2 minutes after antigen challenge in an
active mouse model of anaphylaxis.35 However, it should be
noted that these results do not provide definitive proof of
neutrophil activation in anaphylaxis because MPO could also
be potentially released by other cell populations, including
macrophages.145 Reduced expression of the activating IgG
receptors FcgRIII and FcgRIVon mouse neutrophils occurs after
IgG-mediated PSA, which suggests more definitely that
neutrophils could be directly activated by IgG immune complexes
during anaphylaxis.34,37 Antibody-mediated neutrophil depletion
can reduce anaphylaxis in mice exhibiting IgG-mediated
PSA34,35,38 or mast cell–independent ASAmodels.35,66 However,
neutrophil-depleting antibodies had no effect in a mast
cell–dependent ASA model induced without artificial
adjuvants.66 This suggests that neutrophils might be particularly
prominent in ASA models induced with adjuvants and that such
models might not require any nonredundant contributions of
mast cells (Table I).
Platelets
Anaphylaxis in human subjects is associated with platelet

activation,68 presumably in response to PAF and/or other
mechanisms, and activated platelets can release mediators, such
as platelet factor 4 and serotonin,68 which can contribute to the
pathophysiology of anaphylaxis. Moreover, human (but not
mouse) platelets can express FcεRI, FcεRII, and
FcgRIIA,140,146,147 and platelets can be activated ex vivo after
incubation with serum from allergic patients and subsequent
exposure to the relevant allergen.148 Two recent reports have
shown that during basophil activation tests performed in blood
specimens ex vivo, basophils (a potential source of PAF) can
form associations with platelets,149,150 identifying this interaction
as one that should be investigated further in the context of
anaphylaxis.
POTENTIAL MEDIATORS OF ANAPHYLAXIS

Histamine
Histamine has long been considered an important mediator of

anaphylaxis. Weiss et al69,70 showed that aerosol administration
of histamine induces bronchoconstriction in healthy volunteers,
although the effect of histamine was much less potent than that
of LTs. Intravenous administration of histamine in volunteers
can reproduce many of the signs and symptoms of anaphylaxis,
including cutaneous flushing, headache, airway obstruction, and
transient hemodynamic changes, mainly represented by systemic
hypotension, tachycardia, and increased left ventricular
performance.71,72 There are 4 known histamine receptors, named
H1 to H4.151 Studies with receptor antagonists suggest that some
of the systemic effects of histamine, including airway obstruction
and tachycardia, are mainly mediated through the H1 receptor,
whereas some others, including cutaneous flushing and
headaches, seem to be mediated through both H1 and H2
receptors.71 H1-antihistamines are commonly used as adjunctive
treatment for acute anaphylaxis and anaphylactoid reactions.73

The contribution of histamine to anaphylaxis has also been
confirmed by using mouse models (Table I). Mast cells and
basophils likely represent the main sources of histamine in
patients with anaphylaxis. In agreement with this, histamine
release is abrogated in mast cell–deficient mice in a model of
IgE-mediated PSA,24 and increases in plasma histamine levels
are also abrogated in 2 models of ASA in mice deficient for
both mast cells and basophils.58,66
PAF
PAF is a potent phospholipid-derived mediator implicated in

platelet aggregation and thought to play an important role in a
variety of immune and inflammatory responses. The biology of
PAF and its potential role in anaphylaxis have been recently
reviewed in detail.152 PAF can be released by a variety of human
cells, including purified lung mast cells and blood basophils after
ex vivo stimulation with anti-IgE antibodies153 and purified
neutrophils after incubation in vitro with heat-aggregated human
IgG.154 Many of the cell populations that produce PAF can also
respond to PAF, including platelets, mast cells, neutrophils, and
macrophages.152 Injection of PAF in the skin of healthy
volunteers induces wheal-and-flare reactions.74-76 Because these
reactions could be blocked by H1-antihistamines, it was first
proposed that PAF induced wheals through secondary histamine
release by dermal mast cells.75,76 However, unlike human lung
mast cells and peripheral blood–derived mast cells, skin mast
cells do not degranulate in response to PAF stimulation
ex vivo.155 In addition, Krause et al156 showed that intradermal
injection of PAF, unlike histamine and codeine, did not cause a
statistically significant increase in dermal histamine levels in
healthy volunteers.

A limited number of reports have assessed concentrations of
PAF or platelet-activating factor acetylhydrolase (PAF-AH), an
enzyme responsible for the rapid degradation of PAF, after
anaphylaxis in human subjects. In these reports circulating PAF
levels were increased, and circulating PAF-AH activity was
inversely correlated with the severity of anaphylaxis.43,51,77

The contribution of PAF to anaphylaxis has been studied in
more detail using pharmacologic and genetic approaches in
mouse models (Table I). In most models combined inhibition of
histamine and PAF almost entirely blocked anaphylaxis,
suggesting additive or synergistic effects of histamine and PAF.
The main cellular source of PAF in these reports likely depends
on the exact anaphylaxis model used. Using an adjuvant-free
active anaphylaxis model, we recently reported that the PAF
receptor antagonist CV-6209 can reduce anaphylaxis in
wild-type mice but has no effect on the residual anaphylaxis
observed in monocyte/macrophage-depleted mice, suggesting
that monocytes/macrophages represent the major source of PAF
in this model.66
CysLTs
A third class of potential mediators of anaphylaxis was

originally termed slow-reacting substance of anaphylaxis and
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consists of 3 bioactive CysLTs: LTB4, LTC4, and LTD4.
78 CysLTs

are synthesized from arachidonic acid by a variety of cells,
including mast cells, basophils, and macrophages.157 CysLTs
and their metabolites can be measured by using mass
spectrometry, and several reports show that levels of some of
these products, namely LTE4, 2,3-dinor-9a,11b-PGF2, and
9a,11b-PGF2, are increased during the onset of anaphylaxis.

79-81

Although these reports indicate that CysLTs and their metabolites
might be good biomarkers of anaphylaxis, they do not prove that
these compounds make an important contribution to the clinical
manifestations of anaphylaxis. However, multiple observations
suggest that CysLTs can promote acute allergic reactions. When
injected intradermally in healthy volunteers, each of the 3 CysLTs
elicited a wheal-and-flare reaction.82 In addition, aerosol
administration of LTC4 and LTD4 in healthy subjects induced
bronchoconstriction with 1,000-foldmore potency than histamine
(Table I).69,70,78

More definitive evidence for a role of CysLTs in anaphylaxis
comes from studies in mice. Mice deficient for LTC4 synthase (an
enzyme responsible for biosynthesis of LTC4) or for the CysLT
receptor CysLT receptor type 1 have markedly reduced
IgE-mediated passive cutaneous anaphylaxis.83,84
Other potential mediators
Anaphylaxis induces changes in levels ofmany othermediators,

which could contribute (positively or negatively) to the clinical
signs and symptoms (Table I). This includes tryptase,49,127,158-160

prostaglandins,80,158 and cytokines/chemokines.43,159 Depletion
of the bradykinin precursor high-molecular-weight kininogen
has been observed in patients with anaphylaxis, likely through
activation of the plasma contact system and kallakrein.127,161,162

Patients with anaphylaxis can also experience depletion of clotting
factors, including Factors V and VIII, and in extreme cases
experience disseminated intravascular coagulation.127,163

Although most patients promptly treated for anaphylaxis recover
without obvious sequelae, some have recurrent signs and
symptoms that require continued treatment with epinephrine and
for which corticosteroids are administered.10,164 Such sequelae
are thought to reflect the ‘‘late’’ consequences of some of the
mediators released by effectors of anaphylaxis, such as CysLTs,
cytokines, and chemokines, or by structural cells activated in this
setting.164 Finally, mast cells can release adenosine on
IgE-dependent activation, and adenosine can have complex effects
mediated through various adenosine receptors with distinct
functions, which have the potential to influence the
pathophysiologyof anaphylaxis.165However,morework is needed
to define the importance ofmost of thesemediators in anaphylaxis,
particularly in human subjects.
INSIGHTS FROM HUMANIZED MODELS OF

ANAPHYLAXIS
Several humanized mouse models of anaphylaxis have been

developed to investigate the functions of human antibodies, Fc
receptors, and effector cells in anaphylaxis. Transgenic mice
expressing human FcεRI instead of the mouse protein (hFcεRITg

mice) were generated, and the expression profile of the human
FcεRI transgene is very similar to that found in humans.166-169

hFcεRITg mice can have systemic anaphylaxis in response to
intravenous sensitization with mouse or human IgE (mouse IgE
can bind to human FcεRI, whereas human IgE cannot bind to
the mouse receptor) followed by systemic antigen
challenge,166,169 and also can exhibit cutaneous anaphylaxis
when they are sensitized intradermally with serum from patients
with peanut allergy and then intravenously challenged with
peanut extract.170 hFcgRITg and hFcgRIIATg mice have
also been generated, and the expression of human FcgRI or
FcgRIIA in such transgenic mice recapitulates that found in
humans.85,86 Each of these transgenic models can exhibit
IgG-mediated anaphylaxis though a mechanism involving
monocytes/macrophages and neutrophils.154,171

More recently, Gillis et al87 developed a novel mouse strain in
which the human low-affinity IgG receptor locus, comprising
both activating (human FcgRIIA, FcgRIIIA, and FcgRIIIB) and
inhibitory (human FcgRIIB) human FcgR genes, has been
knocked in into the equivalent mouse locus. These knock-in
mice are susceptible to PSA induced by injection of
heat-aggregated human intravenous immunoglobulin. The
contribution of human FcgRIIA to anaphylaxis is predominant
in these mice, as revealed in experiments using an anti-FcgRIIA
blocking antibody.87 Antibody-mediated depletion of neutrophils
and, to a lesser extent, basophils also ameliorated signs of
anaphylaxis. Finally, such anaphylaxis could be partially
inhibited by using either a PAF receptor antagonist or a histamine
receptor 1 antagonist.87

Recently, 3 groups independently attempted to generate
humanized models of anaphylaxis using different strains of
highly immunodeficient NOD-SCID g (NSG) mice engrafted
with human stem cells.172-174 Bryce et al174 used NSG mice
expressing human stem cell factor, IL-3, and GM-CSF transgenes
(NSG-SGM3 mice) and engrafted them with human thymus,
liver, and hematopoietic stem cells. Such engraftment resulted
in the development of large numbers of human mast cells in
NSG-SGM3 mice in the peritoneal cavity and peripheral tissues.
The authors induced both passive cutaneous anaphylaxis and
PSA reactions on sensitization with a chimeric IgE containing
the human constant region and challenge with the relevant
antigen.

Burton et al172 used NSG mice carrying a human stem cell
factor transgene and engrafted them with human hematopoietic
stem cells. The authors demonstrated that such engrafted mice
also develop large numbers of human mast cells, produce human
IgE in response to gavage with peanut extract, and have
anaphylaxis on subsequent oral challenge with peanut.
Importantly, anaphylaxis in this model could be blocked in
mice treated with the anti-human IgE antibody omalizumab
(which does not recognize mouse IgE).

Pagovich et al173 also developed a humanized model of peanut
anaphylaxis in NSGmice engrafted with bloodmononuclear cells
from patients with peanut allergy with a clinical history of
anaphylaxis. These mice produced human IgE and IgG antibodies
in response to intraperitoneal sensitization with peanut and had
anaphylaxis on subsequent oral challenge with peanut. Again,
anaphylaxis was reduced in mice treated with omalizumab, as
well as inmice that had received an adeno-associated virus coding
for omalizumab.

Altogether, results from such humanized models of
anaphylaxis suggest that both human IgE and human IgG have
the potential to induce anaphylaxis through their respective Fc
receptors and also suggest that peanut anaphylaxis is highly
dependent on IgE.



TABLE II. Key concepts and therapeutic implications

d Although mice can exhibit both IgE- and IgG-dependent anaphylaxis, the existence of IgG-mediated anaphylaxis in human subjects has not been

conclusively demonstrated.

d In addition to mast cells and basophils, macrophages, neutrophils, and perhaps other leukocytes and platelets also might produce a diverse array of

inflammatory mediators during anaphylaxis, and such products have the potential to contribute to reactions that might be difficult to treat, protracted

in nature, or biphasic.

d Genetic modifiers and other host factors, as well as gene-environment interactions, can influence the development of anaphylactic reactivity, as well as

the presentation, severity, or both, of anaphylaxis.

d Although the potential evolutionary benefit of anaphylaxis remains uncertain, recent evidence in mice suggests that anaphylaxis can have effects that can

reduce the toxic effects of certain arthropod or reptile venoms.
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GENETIC DIVERSITY/HOST FACTORS

INFLUENCING ANAPHYLAXIS
Genetic modifiers can influence mast cell activation and the

development of anaphylaxis, as demonstrated in differences
observed between the 129/Sv and C57BL/6 strains of mice.175

129/Sv mice demonstrated higher levels of plasma histamine
than did C57BL/6 mice after anaphylaxis induced by anti-IgE.
Although higher numbers of mast cells and serum IgE levels in
the 129/Sv mice could potentially explain these differences, the
authors also demonstrated that bone marrow–derived cultured
mast cells from 129/Sv mice degranulated more robustly than
those from C57BL/6 while synthesizing similar quantities of
cytokines.175 However, the specific genetic modifiers responsible
for these observed differences between the 2 strains of mice
remain unknown.

Ethnic differences in rates of food allergy and anaphylaxis
suggest that genetic modifiers can exist also in human
populations.176,177 Reasons for these ethnic disparities remain
unclear but might reflect true genetic differences; environmental
factors, including socioeconomic status; or a combination of
factors. Nevertheless, a handful of genetic polymorphisms have
been described that might influence development of anaphylaxis.
Genetic polymorphisms in the genes encoding IL-4 receptor a,
IL-10, and IL-13 have been linked to the development of
anaphylaxis to drugs and latex178-180 but theoretically might
influence allergen sensitization more than (or in addition to)
effector mechanisms during anaphylaxis.

Polymorphisms affecting metabolism of mediators of
anaphylaxis also can influence anaphylaxis severity. As
mentioned above, PAF-AH activity levels inversely correlated
with severity of anaphylaxis.43,51,77 A loss-of-function mutation
in PAF-AH, V279F, has been linked to asthma but not yet to
anaphylaxis.181 Subjects with variants in angiotensinogen
(ie, the MM genotype associated with decreased levels of
angiotensinogen) were reported to have increased rates of
Hymenoptera venom allergy and more severe reactions during
venom immunotherapy.182 Similarly, among patients with tree
nut and peanut allergies, lower serum angiotensin-converting
enzyme levels were associated with more severe pharyngeal
edema, presumably through decreased bradykininmetabolism.183

A few mutations have been described that might influence the
development and severity of anaphylaxis. An activating mutation
in c-KIT D816V promotes mast cell proliferation in patients with
clonal mast cell disorders, including mastocytosis (also see
Akin110 in this issue of the Journal).184,185 D816V mutations
are also found in some patients with recurrent anaphylaxis who
do not have increased mast cell numbers on pathology and
therefore do not meet the criteria for mastocytosis186; although
this suggests that their mast cells are hyperresponsive, this has
not yet been substantiated. In autosomal dominant hyper-IgE
syndrome caused by loss-of-function mutations in signal
transducer and activator of transcription 3, patients have
increased levels of total and allergen-specific IgE but clinically
lower rates of anaphylaxis.187 This clinical observation can be
explained, at least in part, by decreasedmast cell degranulation187

and/or by inhibition of enhanced vascular permeability
through increased resilience of adherens junctions in patients
and cells with signal transducer and activator of transcription 3
loss-of-function mutations.188

The role of sex hormones in patients with anaphylaxis is
unclear. Anaphylaxis occurs more commonly in women than
men.189,190Moreover, in a model of PSA, female mice exhibited a
greater decrease in body temperature than did male mice, and this
sex difference could be abrogated by ovariectomy or
administration of estrogen antagonist to female mice.191

However, analysis of patients in an anaphylaxis registry revealed
increased severity of anaphylaxis in male versus female patients
of 13 to 56 years of age but no sex differences in anaphylaxis
severity for prepubescent patients or those older than 56 years.192
RECOVERY FROM ANAPHYLAXIS
Many of those who have experienced anaphylaxis and

were not treated have survived the episode, particularly
those with less severe presentations. What is the basis of
such recovery? Variations in metabolism of mediators,
including PAF and bradykinin, can influence manifestations of
anaphylaxis43,51,77,183 and theoretically the ability to recover
from these manifestations. In animal models of anaphylaxis and
in human subjects undergoing insect sting challenge, levels of
substances with endogenous vasopressor activity, including
epinephrine, norepinephrine, and angiotensin II, are increased
within minutes after development of anaphylaxis,193,194 which
is likely to compensate for the vasodilation and fluid extravasation
occurring during anaphylaxis. Observations that b-adrenergic
blockade can exacerbate systemic anaphylaxis in mouse and rat
models88,195 and in patients with severe anaphylaxis caused by
multiple causes,196-199 particularly when combined with
angiotensin-converting enzyme inhibitors,200 support a role
for endogenous vasopressors in limiting the severity of
pathophysiologic changes in the setting of anaphylaxis. Mast
cell degranulation releases chymase, which can convert
angiotensin I to angiotensin II201 and thereby directly contribute
to increased angiotensin II levels observed after anaphylaxis. In a
recent article Nakamura et al89 showed that mice in which
mast cells cannot produce prostaglandin D2 have enhanced
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manifestations of IgE-mediated anaphylaxis. Therefore it appears
that mast cells also can secrete antianaphylactic mediators, which
might help to limit anaphylactic responses.89 Evidence in mice
indicates that sphingosine-1-phosphate can both enhance features
of anaphylaxis via effects on mast cells202 and also, via effects on
other cell types, enhance histamine clearance, thus contributing to
recovery from anaphylaxis.203 Finally, it is possible that
genetically determined or other differences in mast cell activation
or mediator release profiles, or in the tissue responses to such
mediators, might contribute to differences in the manifestations
of or recovery from anaphylaxis.
CAN ANAPHYLAXIS BE BENEFICIAL?
Using mouse models, we recently reported that the

development of a type 2 immune response to honeybee venom
(BV) could increase the survival of mice challenged with whole
BV.204 Also, others have shown in mice that a type 2 immune
response to BV phospholipase A2 (which is considered to be
the major BV allergen in human subjects) could diminish the
decrease in body temperature induced by challenge with a
‘‘near-lethal’’ dose of BV phospholipase A2.

205 Importantly, these
effects were dependent on IgE204 and on the high-affinity IgE
receptor FcεRI.204,205 In a follow-up study we also provided
evidence that IgE, FcεRI, and mast cells can enhance the survival
of mice injected with Russell’s viper venom.206

One of the mechanisms by which innate activation of mouse
mast cells can enhance the survival of naive mice on their first
exposure to various arthropod207 or reptile206-208 venoms is the
proteolytic reduction of the toxicity of venom components by
mast cell–derived carboxypeptidase 3A208-209 or mouse mast
cell protease 4 (chymase).207 Given that snake (or arthropod)
envenomation in the field can result in systemic distribution of
the venom, one could argue that systemic IgE-dependent mast
cell activation in this setting could both produce the clinical
picture of anaphylaxis and also result in the systemic release of
mediators (ie, mast cell proteases) that can degrade toxic
components of the venom. In such settings anaphylaxis could
be beneficial if it prevents death by envenomation and the
unfortunate subject also survives the anaphylaxis. Although we
do not know whether human IgE also can enhance resistance to
venoms (and we imagine that we would have some trouble
enlisting volunteers for such a study), it is tempting to speculate
that anaphylaxis induced by small amounts of venom (eg, a single
or wasp bee sting) represents only the most extreme and
maladaptive end of a spectrum of acquired IgE-mediated immune
responses to venom that includes, at the other end of the spectrum,
appropriately regulated immune responses that can enhance
resistance to such venoms.
CONCLUDING REMARKS
Anaphylaxis represents one of the most urgent of medical

emergencies, in which rapid diagnosis and prompt and
appropriate treatment can mean the difference between life and
death. Although there has been steady progress in our
understanding of the antibodies, effector cells, and mediators
that can contribute to the development and manifestations of
anaphylaxis, especially in the context of mouse models of the
disorder, the basic clinical management of anaphylaxis has
changed little in decades (see Castells6 in this issue of the Journal
and Table II). In a report published in 2005, Sampson et al5

identified as major research needs both the development of
‘‘universally accepted diagnostic criteria’’ and the importance
of identifying ‘‘reliable laboratory biomarkers to confirm the
clinical impression.’’ As noted in our introduction, the first need
largely has been addressed by international and interdisciplinary
efforts to forge consensus. However, the second need remains
essentially unfulfilled. It is our hope that further progress in
understanding the immunopathogenesis and pathophysiology of
anaphylaxis in all of its various forms will help to guide efforts
to devise more effective strategies for preventing this disorder
and also to provide more effective options for rapidly diagnosing
and effectively treating anaphylaxis when it occurs.
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